Goldman Engineering Management Dallas, Texas.

WFJO (FM)

Proposed Minor Modification of Licensed Facility And Community of License Change

Overview of Application

WFJO (FM) by this application proposes to modify facilities and move from channel 223A, Folkston, GA to channel 223A, Jacksonville Beach, FL. This relocation is made possible by the grant of an application by station WROO(FM), channel 224A, which has just received a construction permit to modify facilities and move from channel 224A, Green Cove Springs, FL to channel 224A, Beverly Beach, FL. WFJO believes that its proposal is consistent with Section 73.3517 of the Commission's rules, as WROO has received a construction permit to modify its facilities. However, in the event that the Commission disagrees, WFJO requests a waiver of that rule to permit acceptance of the instant application.

Allotment Modifications to Accommodate Community Change

Following is an allotment study for channel 223A as proposed for Jacksonville Beach, FL. From the below fully spaced reference coordinates, WFJO will be able to fully cover Jacksonville Beach, FL. with a 70dBu signal.

ComStudy 2.2 search of channel 223 (92.5 MHz Class A) at 30-21-24.0 N, 81-24-52.0 W.

Callsign	State City	Freq	Chann	elERP_w	Clas	s Statu	s Dist_km	Sep	Clr	Notes
801001AA	GA ST. SIMONS ISLAND	92.7	224	0.0	Α	USE	87.08	72.00	15.1	
871124MN	I FL ALACHUA	92.5	223	0.0	Α	USE	121.52	115.00	6.5	
NEW	FL PONTE VEDRA	91.9	220	19.0	D	APP	8.89	0.00	8.9	
NEW	FL PONTE VEDRA	91.9	220	20.0	D	APP	8.89	0.00	8.9	
NEW	FL PONTE VEDRA	91.9	220	20.0	D	APP	8.89	0.00	8.9	
WAYL	FL ST. AUGUSTINE	91.9	220	5000.0	Α	LIC	56.74	31.00	25.7	
WBGA	GA ST. SIMONS ISLAND	92.7	224	6000.0	Α	LIC	89.43	72.00	17.4	
WFJO	GA FOLKSTON	92.5	223	0.0	Α	USE	81.63	115.00	-33.4	DEL ¹
WFJO	GA FOLKSTON	92.5	223	3200.0	Α	LIC	64.84	115.00	-50.2	DEL ¹
WJXR	FL MACCLENNY	92.1	221	0.0	C 3	USE	58.14	42.00	16.1	
WJXR	FL MACCLENNY	92.1	221	25000.0	C3	LIC	58.14	42.00	16.1	
WNDT	FL ALACHUA	92.5	223	3200.0	Α	LIC	116.01	115.00	1.0	
WROO	FL BEVERLY BEACH	92.7	224	0.0	Α	RSV	82.84	72.00	10.8	
WROO	FL BEVERLY BEACH	92.7	224	6000.0	Α	CP	92.20	72.00	20.2	
WROO	FL GREEN COVE SPRINGS	92.7	224	0.0	Α	USE	38.89	72.00	-33.1	DEL ²
WROO	FL GREEN COVE SPRINGS	92.7	224	2600.0	Α	LIC	38.99	72.00	-33.0	DEL ²

Following is a discussion of the notes above:

DEL¹- Mutually Exclusive Existing WFJO as currently licensed.

DEL²- As authorized in current construction permit granted to WROO at Beverly Beach, FL.

Exhibit 1 is a map from the proposed fully spaced allocation reference coordinates showing that from this location, full 70dBu coverage is achieved to Jacksonville Beach, Florida.

Exhibit 2 is a topographic map indicating the location of the reference coordinates for WFJO at Jacksonville Beach, Florida.

<u>Transmitter Location for WFJO(FM) at Jacksonville Beach, Florida</u>

WFJO desires to relocate to an existing tower, ASR 1017604. Following is an allocation table for WFJO at the proposed tower site:

ComStudy 2.2 search of channel 223 (92.5 MHz Class A) at 30-16-24.0 N, 81-33-13.0 W.

Callsign	State	City	Freq	Channe	IERP_w	Class	Status	Dist_km	Sep	Clr	Notes
801001AA	GA	ST. SIMONS ISLAND	92.7	224	0.0	Α	USE	97.64	72.00	25.6	
871124MN	FL	ALACHUA	92.5	223	0.0	Α	USE	105.29	115.00	-9.7	73.215
NEW	FL	PONTE VEDRA	91.9	220	19.0	D	APP	15.00	0.00	15.0	
NEW	FL	PONTE VEDRA	91.9	220	20.0	D	APP	15.01	0.00	15.0	
NEW	FL	PONTE VEDRA	91.9	220	20.0	D	APP	15.00	0.00	15.0	
WAYL	FL	ST. AUGUSTINE	91.9	220	5000.0	Α	LIC	51.62	31.00	20.6	
WBGA	GA	ST. SIMONS ISLAND	92.7	224	6000.0	Α	LIC	98.77	72.00	26.8	
WFJO	GA	FOLKSTON	92.5	223	0.0	Α	USE	80.26	115.00	-34.7	DEL ¹
WFJO	GA	FOLKSTON	92.5	223	3200.0	Α	LIC	62.35	115.00	-52.6	DEL ¹
WJXR	FL	MACCLENNY	92.1	221	0.0	C3	USE	44.50	42.00	2.5	
WJXR	FL	MACCLENNY	92.1	221	25000.0)C3	LIC	44.50	42.00	2.5	
WNDT	FL	ALACHUA	92.5	223	3200.0	Α	LIC	99.75	115.00	-15.3	73.215
WROO	FL	BEVERLY BEACH	92.7	224	0.0	Α	RSV	78.74	72.00	6.7	
WROO	FL	BEVERLY BEACH	92.7	224	6000.0	Α	APP	86.46	72.00	14.5	
WROO	FL	GREEN COVE SPRINGS	92.7	224	0.0	Α	USE	24.28	72.00	-47.7	DEL ²
WROO	FL	GREEN COVE SPRINGS	92.7	224	2600.0	Α	LIC	24.39	72.00	-47.6	DEL ²
WWKA	FL	ORLANDO	92.3	222	0.0	С	USE	190.53	165.00	25.5	

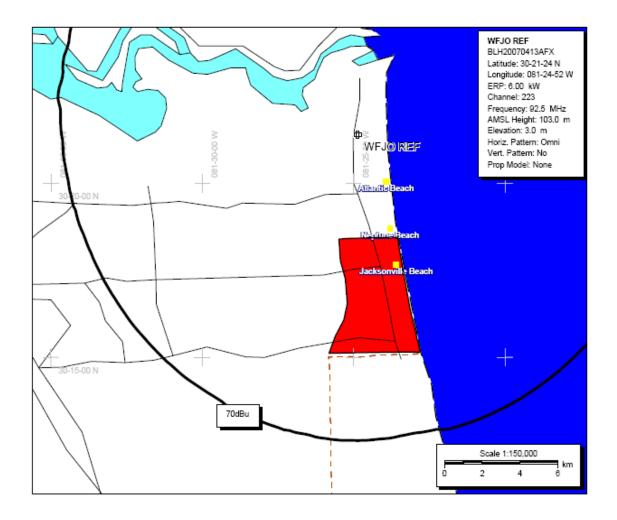
Following is a discussion of the notes above:

<u>DEL</u>¹- Mutually Exclusive Existing WFJO as currently licensed.

<u>DEL²</u>- As authorized in current construction permit granted to WROO at Beverly Beach, FL.

<u>WNDT</u>- WFJO will operate pursuant to Section 73.215 with respect to WNDT using a directional antenna. 73.215 spacing is 99.75km, minimum allowable under 73.215(e) is 92km. Exhibit 3 is a contour study for WFJO and WNDT along with the proposed pattern.

Exhibit 4 is a map showing that 98.1% of the population and 97.5% of the land area within Jacksonville Beach are covered within the 70dBu contour for WFJO from the proposed tower location.


Environmental Exhibit

The proposed WFJO facility will be operated from an existing transmitter facility and tower at ASR 1017604; therefore no additional environmental processing will be necessary from a NEPA or SHPO standpoint.

The program "FM MODEL" was utilized to determine the radiation characteristics of a 2 bay ERI "Rototiller" type antenna for compliance with FCC and OSHA policies regarding RF radiation at 2 meters above ground. The output of that program is shown as Exhibit 5. The program determined that the radiation from the proposed WFJO(FM) antenna will be $0.416~\mu W/cm^2$ maximum. Because the maximum public exposure level is 0.2%, it is categorically excluded from further environmental review and is thus fully compliant with all rules pertaining to radiation exposure.

WFJO agrees to cooperate with other users on the tower to reduce or terminate operation if necessary during maintenance operations.

EXHIBIT 1- COMMUNITY COVERAGE FROM REFERENCE COORDINATES

EXHIBIT 2- Topographical Map of Reference Coordinates

EXHIBIT 3-73.215 Contour Protection to WNDT

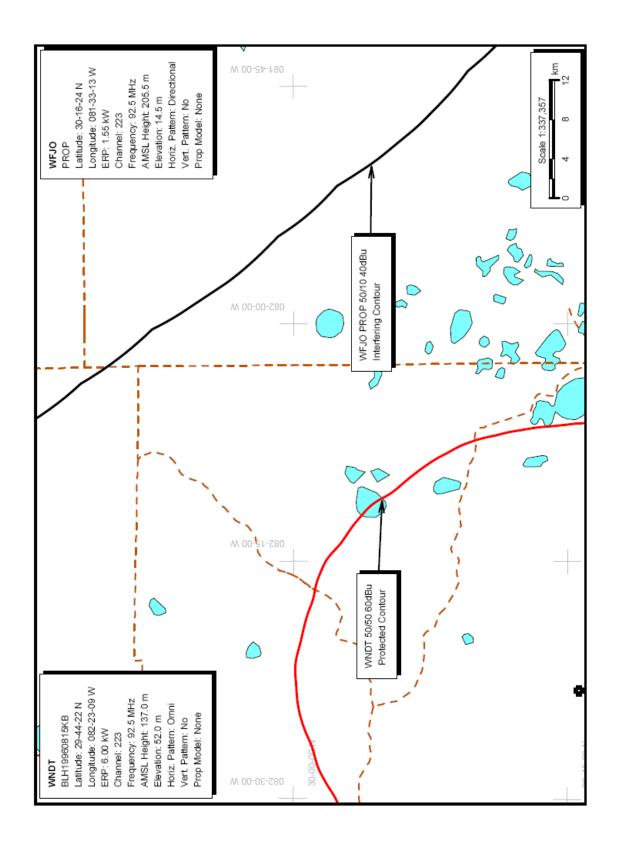
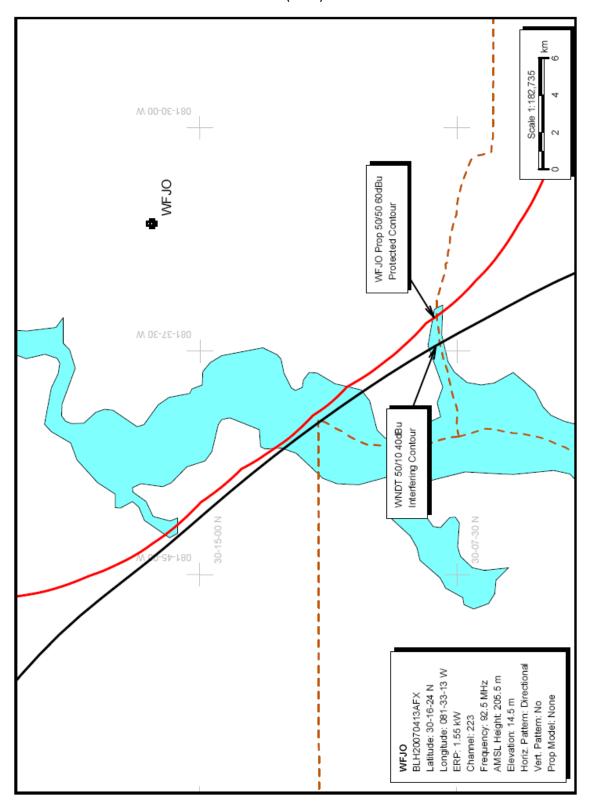



EXHIBIT 3 (cont) 73.215

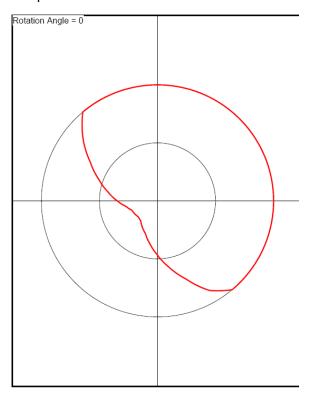
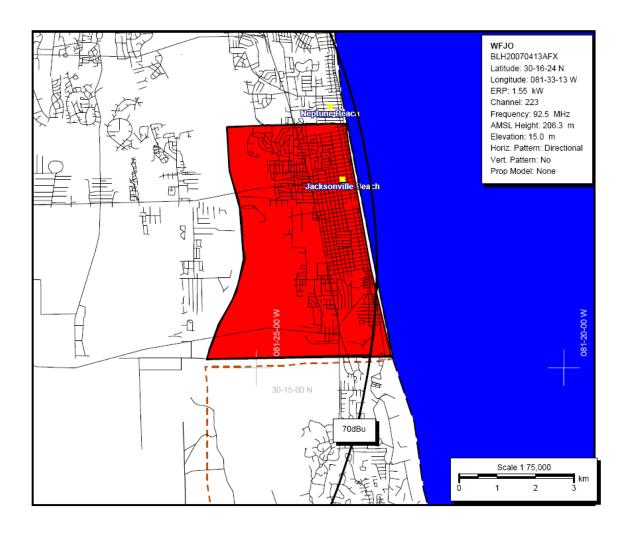
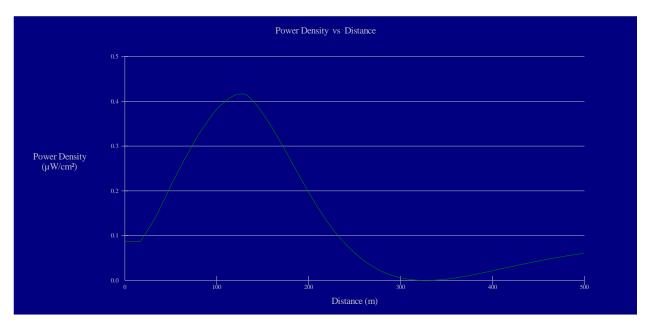


EXHIBIT 3 (cont) WFJO Prop Antenna Pattern

WFJO Fileable pattern


Pre-Rotation Antenna Pattern....

0.0	5.0 1.000 10.0 1.000 15.0 1.000 20.0 1.000 25.0 1.000 30.0 1.000 35.0 1.000 40.0 1.000 45.0 1.000 50.0 1.000 55.0 1.000 66.0 1.000 70.0 1.000 75.0 1.000 80.0 1.000 85.0 1.000 90.0 1.000 95.0 1.000 100.0 1.000 105.0 1.000 115.0 1.000 125.0 1.000 130.0 1.000 125.0 1.000 135.0 1.000 145.0 0.946 150.0 0.891 155.0 0.803 165.0 0.649 170.0 0.582 175.0 0.524 180.0 0.467 185.0 0.224 195.0	Azimuth (deg)	Effective Field
260.0 0.275 265.0 0.310 270.0 0.346	280.0 0.431 285.0 0.484 290.0 0.536 295.0 0.602 300.0 0.668 305.0 0.752 310.0 0.837	0.0 5.0 10.0 15.0 20.0 25.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 90.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0 145.0 150.0 155.0 160.0 165.0 170.0 175.0 180.0 185.0 190.0 195.0 200.0 205.0 210.0 225.0 230.0 225.0 230.0 225.0 230.0 225.0 220.0 225.0 220.0 225.0 230.0 225.0 220.0 225.0 230.0 225.0 220.0 225.0 220.0 225.0 220.0 225.0 220.0 225.0 220.0 225.0 220.0 225.0 220.0 225.0 230.0 225.0 220.0	1.000 1.000
	265.0 0.310 270.0 0.346 275.0 0.389 280.0 0.431 285.0 0.484 290.0 0.536 295.0 0.602 300.0 0.668 305.0 0.752 310.0 0.837	245.0 250.0 255.0	0.230 0.235 0.255



320.0	1.000
325.0	1.000
330.0	1.000
335.0	1.000
340.0	1.000
345.0	1.000
350.0	1.000
355.0	1.000

EXHIBIT 4- COMMUNITY COVERAGE FROM PROPOSED TOWER SITE ASR 1017604. 200m HAAT, 1.55Kw ERP

EXHIBIT 5

Distance (m)- 500 Type: ERI or Jampro "Rototiller" Horizontal ERP= 1,550 Number of Elements = 2 Vertical ERP= 1,550 Element Spacing = 1 Maximum Power density at 2m AGL = 0.416 μ W/cm²